THIENO[3,4-c]ISOTHIAZOLE. SYNTHESIS OF A NEW NONCLASSICAL THIOPHENE AND ITS

CYCLOADDITION TO ALKYNES AND ALKENES

Hans Gotthardt and Friedemann Reiter

Institut für Organische Chemie der Universität München

Karlstrasse 23, D-8000 München 2, BRD

(Received in UK 28 April 1976; accepted for publication 10 May 1976)

Recently, several nonclassical condensed thiophenes containing 10π electrons and two masked 1,3-dipoles have been prepared and subjected to cycloaddition reactions ¹⁻⁶. Examples are: tetraphenylthieno[3,4-c]thiophene^{2,3}, tetraphenylthieno[3,4-c]furan⁴, substituted thieno[3,4-c]pyrroles^{3,4}, thieno [3,4-c]pyrazoles⁵, and thieno[3,4-c]thiadiazole⁶. Our continuing interest in 1,3-dipolar cycloaddition reactions prompted us to synthesize the new thieno [3,4-c]isothiazole of type $\underline{3}$ and to study its cycloaddition to alkynes and alkenes.

When a toluene solution of 4-phenyl-1,3,2-oxathiazolylium-5-olate $(1)^7$ and dibenzoylacetylene is warmed at 80° , carbon dioxide is evolved and 3,4-dibenzoyl-5-phenylisothiazole (2) is formed in 18% yield (mp 140-141.5°). Treat-

3с

3d

3 b

3 a

ment of $\underline{2}$ according to the method described by Potts et al.³ with phosphorus pentasulfide in refluxing pyridine, affords triphenylthieno[3,4-c]isothiazole ($\underline{3}$) in 80-93% yield as glistening, deep violet needles ($\underline{3}$:mp > 120° dec.; uv (CH₂Cl₂) λ max = 529 nm (1g s = 4.13), 280 (4.34), 242 (4.23); ms (70 eV), m/e = 369 (100%, M⁺), 184.5 (7%, M²⁺)). $\underline{3}$ is stable in the solid state, but solutions of it are readily bleached in the presence of air and light.

This novel 10π -electron heterobicycle $\frac{3}{2}$ exhibits in the resonance formula $\frac{3a}{2}$ the 1,3-dipolar system of a thiocarbonyl ylide and in formula $\frac{3b}{2}$ that of a thiocarbonyl imine. It was of interest to us to examine which of the halves of the molecule will react with dipolar ophiles.

Refluxing a xylene solution of $\frac{3}{2}$ in presence of dimethyl acetylenedicarboxylate under an atmosphere of dry nitrogen in the dark, proceeds with formation of the benzo[c]isothiazole derivative $\frac{5}{2}$ in a 86% yield, after thin layer chromatography ($\frac{5}{2}$:mp 190-190.5°; ir, 1723, 1710 cm⁻¹ (C=0); nmr (60 MHz, CDCl₃), $\tau = 6.53$, 6.43 (2s, 2 OCH₃), 3.14-2.22 (m, 3 C₆H₅); ms, m/e = 479 (100%, M⁺)). The structure of $\frac{5}{2}$ is established by the result of reductive desulfurization. Treatment of $\frac{5}{2}$ with Raney nickel in benzene at 60° leads to formation of the aminoterphenyl derivative $\frac{7}{2}$ (67%) which subsequently is transformed with acetylchloride into the N.N-bisacetyl derivative

of $\underline{7a}$ ($\underline{7a}$:mp 170-171°; ir, 3490, 3470, 3400, 3380 cm⁻¹ (N-H), 1730, 1720 (C=0), 1621 (vinylogous amide); nmr, τ = 6.60, 6.53 (2s, 2 OCH₃), 6.17 (broad s, CH₂, NH₂), 3.03-2.43 (m, 3 C₆H₅)).

These results show clearly that the cycloaddition has occurred at the thiocarbonyl ylide system of $\underline{3}$ and not at the thiocarbonyl imine. The latter alternative pathway should have led to the thienopyridine $\underline{6}$. During the reaction course, the non-isolable primary cycloaddition product $\underline{4}$ has readily eliminated sulfur as a result of a cheletropic reaction. Of course, considering the resonance contributors to $\underline{2}$, the primary addition step can be interpreted as [3+2] or [4+2] cycloaddition.

Similarly, the reaction of $\underline{3}$ with methyl propiolate at 110° yields a mixture of the isomers $\underline{5}\underline{b}$ and $\underline{5}\underline{c}$ ($\underline{5}\underline{b}$:37%; mp 192-192.5°; ir, 1710 cm⁻¹ (C=0); ms, $\underline{m}/\underline{e} = 421$ (100%, M⁺); $\underline{5}\underline{c}$:50%; mp 224-225°; ir, 1715 cm⁻¹ (C=0)). Raney nickel desulfurization of $\underline{5}\underline{b}$ or $\underline{5}\underline{c}$ proceeds with formation of $\underline{7}\underline{b}$ (1712 cm⁻¹ (C=0)) or $\underline{7}\underline{c}$ (1727 cm⁻¹), respectively. $\underline{7}\underline{b}$ exhibits the vinylogous amide band at 1615 cm⁻¹.

In contrast, the reactions of 3 with alkenes proceed without cheletropic elimination of sulfur; in these cases, the primary adducts remain stable under the reaction conditions.

Thus, heating a solution of $\frac{3}{2}$ in dimethyl maleate at 115-120° until the deep violet color of $\frac{3}{2}$ has completely disappeared, yields a 85:15 mixture of the two isomers $\frac{89}{2}$ and $\frac{89}{2}$ ($\frac{89}{2}$: uv ($\mathrm{CH_2Cl_2}$), $\lambda_{\mathrm{max}} = 262.5$ nm ($\mathrm{lg}~\epsilon = ^{4}.06$); nmr, $\tau = 6.66$, 6.59 (2s, 2 OCH₃), 5.77 (s, 2H), 3.38-2.08 (m, 3 C₆H₅); ms, $\frac{\mathrm{m/e}}{2} = 513$ (24%, M⁺), 369 (100, $\frac{2}{2}$); $\frac{89}{2}$: uv ($\mathrm{CH_2Cl_2}$), $\lambda_{\mathrm{max}} = 274$ nm ($\mathrm{lg}~\epsilon = 4.18$); nmr, $\tau = 6.50$, 6.35 (2s, 2 OCH₃), 5.00 (s, 2H), 3.12-1.85 (m, 3 C₆H₅)) On the other hand, $\frac{3}{2}$ reacts in the presence of dimethyl fumarate with

8	R ¹	R ²	R ³	R ⁴	% isolated yield	mp (dec.)
ā	со2сн3	со ₂ сн ₃	н	н	74	222.5-223.5°
þ	н	н	со ₂ сн ₃	со ₂ сн ₃	8	205.5-206°
č	со ₂ сн ₃	н	н	со2сн3	47	163 –164°
₫	н	со ₂ сн ₃	со ₂ сн ₃	н	38	205.5-206.5°

formation of the other stereoisomers $\underline{8c}$ and $\underline{8d}$, indicating that the cycloaddition reactions proceed stereospecifically ($\underline{8c}$: nmr, $\tau = 6.60$, 6.47 (2s, 2 OCH₃), 5.84, 5.47 (2d, $\underline{J} = 4.5$ Hz, 2H), 3.33-1.77 (m, 3 C_6H_5); $\underline{8d}$: nmr, $\tau = 6.70$, 6.37 (2s, 2 OCH₃), 6.05, 4.93 (2d, $\underline{J} = 5.0$ Hz, 2H), 3.05-2.37 (m, 3 C_6H_5)). Treatment of $\underline{8a}$ - \underline{d} with potassium hydroxide in methanol/acetonitrile (65°) afford $\underline{5a}$ almost quantitatively.

Furthermore, similar adducts are obtained from $\underline{3}$ and $\underline{\text{fumaronitrile}}$ or $\underline{\text{N-}}$ phenylmaleimide.

All new compounds described showed satisfactory analytical data.

Acknowledgement: This work was supported by the Fonds der Chemischen Industrie.

REFERENCES

- 1. M.P.Cava and M.V.Lakshmikantham, Accounts Chem.Res., 8, 139 (1975).
- 2. M.P.Cava, M.Behforouz, G.E.Husbands, and M.Srinivasan, J.Am.Chem.Soc., 95, 2561 (1973).
- 3. K.T.Potts and D.McKeough, J.Am.Chem.Soc., 96, 4268 (1974).
- 4. M.P.Cava, M.A.Sprecker, and W.R.Hall, J.Am.Chem.Soc., 96, 1817 (1974).
- 5. K.T.Potts and D.McKeough, <u>J.Am.Chem.Soc.</u>, <u>96</u>, 4276 (1974).
- 6. J.D.Bower and R.H.Schlessinger, <u>J.Am.Chem.Soc.</u>, <u>91</u>, 6891 (1969).
- 7. H.Gotthardt, Chem.Ber., 105, 188,196 (1972).